首页> 外文OA文献 >Heterogeneous Feature Selection with Multi-Modal Deep Neural Networks and Sparse Group Lasso
【2h】

Heterogeneous Feature Selection with Multi-Modal Deep Neural Networks and Sparse Group Lasso

机译:多模态深度神经网络和稀疏组套索的异构特征选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Heterogeneous feature representations are widely used in machine learning and pattern recognition, especially for multimedia analysis. The multi-modal, often also highdimensional, features may contain redundant and irrelevant information that can deteriorate the performance of modeling in classification. It is a challenging problem to select the informative features for a given task from the redundant and heterogeneous\udfeature groups. In this paper, we propose a novel framework to address this problem. This framework is composed of two modules, namely, multi-modal deep neural networks and feature selection with sparse group LASSO. Given diverse groups of discriminative features, the proposed technique first converts the multi-modal data into a unified representation with different branches of the multi-modal deep neural networks. Then, through solving a sparse group LASSO problem, the feature\udselection component is used to derive a weight vector to indicate the importance of the feature groups. Finally, the feature groups with large weights are considered more relevant and hence are selected. We evaluate our framework on three image classification datasets. Experimental results show that the proposed approach\udis effective in selecting the relevant feature groups and achieves competitive classification performance as compared with several recent baseline methods.
机译:异构特征表示已广泛用于机器学习和模式识别,尤其是用于多媒体分析。多模式(通常也是高维)特征可能包含多余和不相关的信息,这些信息可能会使分类中建模的性能恶化。从冗余和异构\ udfeature组中为给定任务选择信息功能是一个挑战性的问题。在本文中,我们提出了一个新颖的框架来解决这个问题。该框架由两个模块组成,即多模式深度神经网络和稀疏组LASSO的特征选择。给定各种区分特征,所提出的技术首先将多模态数据转换为具有多模态深度神经网络不同分支的统一表示形式。然后,通过解决稀疏组LASSO问题,特征\非选择分量用于导出权重向量,以指示特征组的重要性。最后,权重较大的特征组被认为更相关,因此被选择。我们在三个图像分类数据集上评估我们的框架。实验结果表明,与几种最新的基线方法相比,该方法在选择相关特征组方面有效,并且具有竞争性的分类性能。

著录项

  • 作者

    Zhao, L; Hu, Q; Wang, W;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号